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HYDRODYNAMICALLY DRIVEN FLOW 
 

George M. Hrbek 
 

Los Alamos National Laboratory, Los Alamos, NM 87545 
 

In order to apply the power of a full group analysis(1)  to the problem of an expanding shock in planar, 
cylindrical, and spherical geometries, the expression for the shock front position R[t] has been modi-
fied to allow the wave to propagate through a general non-uniform medium.  This representation in-
corporates the group parameter ratios as meaningful physical quantities and reduces to the classical 
Sedov-Taylor solution for a uniform media. 
Expected profiles for the density, particle velocity, and pressure behind a spherically diverging shock 
wave are then calculated using the Tait equation of state for a moderate (i.e., 20 t TNT equivalent) 
blast load propagating through NaCl. The changes in flow variables are plotted for Mach � 1.5 
Finally, effects due to variations in the material uniformity are shown as changes in the first deriva-
tive of the bulk modulus (i.e., Ko’).   

 
 
 
 

 INTRODUCTION 
 DIMENSIONAL ANALYSIS APPLIED TO 

THE EXPANDING SHOCK FRONT In the companion paper(1) a general solution to the 
1D hydrodynamic shock wave was given in terms 
of its group invariance properties. 

 
The traditional Taylor-Sedov dimensional expres-
sion for the expanding shock front only allows for 
an ideal gas, power law non-uniformity. 

 Self-similar profiles for the reduced density, parti-
cle velocity, and pressure behind the shock were 
shown to be explicit functions of the Mach number 
at the front, the equation of state, the shock forma-
tion time, and the uniformity of the material ahead 
of the shock. 

In order to apply the present work into the non-
uniform regime for a general material, it is neces-
sary to incorporate a velocity dependence into the 
expression for the expanding shock front, R[t].  
This yields the following ordinary differential 
equation;  

In order to illustrate how the group theoretic 
method can be applied to the investigation of real 
experiments, this study will consider a moderately 
strong (M�1.5), spherically diverging shock wave 
propagating through a solid block of NaCl using 
the Tait equation of state 
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Where R’[t] is the velocity of the shock front, t is 
time, � is the density, E is the energy of the blast, � 
is the uniformity of the material ahead of the 

 
 

 



 

 shock, � is the expansion rate of the shock, � the 
shock formation time, and j=0, 1, or 2 for rectangu-
lar, cylindrical, and spherical geometries respec-
tively. Note that this equation reduces to the 
classical solution for a uniform material. 

 

Figure 3 Shock Front Acceleration 
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This differential equation has the solution  
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 Where �=2(J+1)/[(J+3)(�-1)] and the shock posi-

tion has been shifted so that R[t]=0 at t=� (the ini-
tial point where the shock wave forms). 

 
 
 The group parameters, � and �, are related through 

the invariance of the energy integral (i.e., �=2-
(J+3)�) and both are ultimately functions of the 
properties of the propagating medium 

ILLUSTRATIVE EXAMPLE 
 
As an example, consider the Tait Equation of 
State(2) with a shock propagating through NaCl  

Figures 1 through 3 are plots of the un-scaled (i.e., 
the E/� term has been taken out) shock front posi-
tion, velocity, and acceleration respectively. Note 
that the shock wave takes a finite amount of time 
to form. 

(�=2.17 gm/cc, c=2440m/s, Ko=23.81GPa and 
Ko’=5.68)(3). 
We will assume that the shock wave is produced 
by a 20 ton TNT equivalent blast propagating 
through a uniform block of NaCl and that the 
shock takes 5ms to form. 

 Figure 1 Shock Front Position 
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The choice of such a long formation time is to 
allow graphical illustration of the shock formation 
delay on the same graph as the characteristic 
shapes of the shock front position over a 
reasonably large range of time.  Actual formation 
times would of course be much shorter. 
Figure 4 shows the speed of the shock front as a 
function of time for such a blast.   
 
 

 Figure 2 Shock Front Velocity
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Figure 4 u/g[x] For 20 tons TNT
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From this calculation a correspondence between 
the shock speed and time can be determined for the 
blast and is shown as Table 1.  

Figure 6 Velocity Profiles for NaCl
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Table 1. Shock Speed for a 20t TNT Equiv. 

Wave Passing Through NaCl 
 

Time after 
Initiation (s) 

Mach No. (M) 

0.20 1.5 
0.28 1.2 
0.33 1.1 

 

Figure 7 Pressure Profiles for NaCl
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Each Mach number corresponds to a unique com-
pression ratio, �, [Ref. 1, Eq. 30] at the shock 
front.  The magnitude of the compression is de-
pendent on the particular equation of state (e.g., 
Tait).  Following the methodology outlined in Ref-
erence 1, this compression ratio is used to generate 
the initial conditions at the front and the reduced 
equations for f[�], g[�], and h[�] are solved nu-
merically from the coupled set of equations [Ref. 
1, Eqs. 11-17]. 
After calculating these reduced profiles, the actual 
flow variables are recovered using the following 
scales; 

 
CHANGES IN Ko’ FOR NaCl 
 For the density 
Group theory may also be used to aid in the 
interpretation of experiments. 

� � � ����� ftt o )(, �                (3) 
and the velocity 

As a case in point, Chbabildas and Ruoff(3) reported 
values for the Ko’ of NaCl between 5.68 and 5.98.  
By performing the procedure outlined in this paper, 
a researcher may be able to find an inconsistency 
in their experiment by determining the density, 
particle velocity, and pressure profiles behind the 
shock for a specified Mach number using the group 
theory representation of the flow. 

� � � ��� gtRtu ][', �                                     (4) 
and finally the pressure 
� � ][][')(, 2 ��� htRttP o�                 (5) 

 
This analysis has been carried out in generating 
figures 5 - 7. 
 

This is because differences in the numerical value 
of the material parameters and the uniformity of 
the material in front of the shock show up quite 
clearly as variations in the calculated density, par-
ticle velocity, and pressure profiles.  These differ-
ences are unique signatures that modify each pro-
file as the shock slows down. 

Figure 5 Density Profiles for NaCl
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To illustrate this point, calculations for the reduced 
flow variables have been calculated for the range 
of values for NaCl stated above.  
Figures 8-10 show how the density, particle veloc-
ity, and pressure profiles vary due to changes in the  

 



 

 material uniformity parameter �, and the material 
parameter Ko’, for a general spherically diverging 
shock wave for the asymptotically limiting com-
pression ratio of 1.68 in NaCl. 

 
 
 
  
 

Figure 8 NaCl Variations for Ko'  5.68* and 5.98**
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Figure 9 NaCl Variations for Ko' foy 5.68* & 5.98**
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DISCUSSION AND CONCLUSIONS 
 
The application of this method is straightforward 
and powerful. It does not require that the total evo-
lution of the flow be determined. 
To due this, the initial conditions on the backside 
of the shock front are computed from the 
Mach/compression correlation at the front. 
Experimentally, this correlation would be made 
through regression of the shock front position with 
time (i.e., R[t]). 
The Mach number of the front is then used to esti-
mate the compression ratio for a given equation of 
state at a particular moment of time. 
The flow variables can then be determined via 
quadrature of the reduced equations and scaled. 
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Figure 10 NaCl Variations for Ko' for 5.68* and 5.98**
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